Get Quote

Ningbo Brightfast Machinery Industry Trade Co.,Ltd

News

  • Rivet
    A rivet is a permanent mechanical fastener. Before being installed, a rivet consists of a smooth cylindrical shaft with a head on one end. The end opposite the head is called the tail. On installation the rivet is placed in a punched or drilled hole, and the tail is upset, or bucked (i.e., deformed), so that it expands to about 1.5 times the original shaft diameter, holding the rivet in place. In other words, pounding creates a new "head" on the other end by smashing the "tail" material flatter, resulting in a rivet that is roughly a dumbbell shape. To distinguish between the two ends of the rivet, the original head is called the factory head and the deformed end is called the shop head or buck-tail. Because there is effectively a head on each end of an installed rivet, it can support tension loads (loads parallel to the axis of the shaft); however, it is much more capable of supporting shear loads (loads perpendicular to the axis of the shaft). Bolts and screws are better suited for tension applications. Fastenings used in traditional wooden boat building, such as copper nails and clinch bolts, work on the same principle as the rivet but were in use long before the term rivet was introduced and, where they are remembered, are usually classified among nails and bolts respectively. https://en.wikipedia.org/wiki/Rivet

    2015 10/23

  • Bolts
    Bolts can be classified into different types based on their design, material, and usage. One common classification is based on the shape of the head of the bolt. There are hex bolts, which have a six-sided head that can be tightened with a wrench, and carriage bolts, which have a rounded head and a square neck that prevents them from turning when tightened. Another classification is based on the material of the bolt. Bolts can be made of steel, stainless steel, brass, or other metals, each with its own properties and applications. For example, stainless steel bolts are corrosion-resistant and often used in outdoor or marine environments, while brass bolts are non-magnetic and commonly used in electrical applications. Bolts can also be classified based on their usage, such as anchor bolts, which are used to secure objects to concrete or masonry, or machine bolts, which are used to fasten metal parts together. Overall, bolts come in a variety of shapes, sizes, and materials to suit different applications and requirements.

    2024 02/22

  • Washer (hardware)
    A washer is a thin plate (typically disk-shaped) with a hole (typically in the middle) that is normally used to distribute the load of a threaded fastener, such as a screw or nut. Other uses are as a spacer, spring (belleville washer, wave washer), wear pad, preload indicating device, locking device, and to reduce vibration (rubber washer). Washers usually have an outer diameter (OD) about twice the width of their inner diameter (ID). Washers are usually metal or plastic. High quality bolted joints require hardened steel washers to prevent the loss of pre-load due to Brinelling after the torque is applied. Rubber or fiber gaskets used in taps (or faucets, or valves) to stop the flow of water are sometimes referred to colloquially as washers; but, while they may look similar, washers and gaskets are usually designed for different functions and made differently. Washers are also important for preventing galvanic corrosion, particularly by insulating steel screws from aluminium surfaces. The origin of the word is unknown; the first recorded use of the word was in 1346, however the first time its definition was recorded was in 1611.[1] Type and form Washers can be categorised into three types; Plain washers, which spread a load, and prevent damage to the surface being fixed, or provide some sort of insulation such as electrical Spring washers, which have axial flexibility and are used to prevent fastening loosening due to vibrations Locking washers, which prevent fastening loosening by preventing unscrewing rotation of the fastening device; locking washers are usually also spring washers. The American National Standards Institute (ANSI) provides standards for general use flat washers. Type A is a series of steel washers with broad tolerances, where precision is NOT critical. Type B is a series of flat washers with tighter tolerances where outside diameters are categorized as 'Narrow', 'Regular' or 'Wide' for specific bolt sizes.[2] 'Type' is not to be confused with 'form' (but often is). The British Standard for Metric Series Metal Washers (BS4320) written in 1968 coined the term 'form'. The forms go from A to D for Bright Metal and denote outside diameter and thickness. They can be summarised as - Form A: Normal diameter, normal thickness Form B: Normal diameter, light thickness Form C: Large diameter, normal thickness Form D: Large diameter, light thickness Forms E to G relate to black metal washers. Plain washers A plain washer (or 'flat washer') is a flat annulus or ring, often of metal, used to spread the load of a screwed fastening. Additionally, a plain washer may be used when the hole is a larger diameter than the fixing nut.[3][4] A fender washer is a flat washer with a particularly large outer diameter in proportion to its central hole. They are commonly used to spread the load on thin sheet metal, and are named after their use on automobile fenders. They can also be used to make a connection to a hole that has been enlarged by rust or wear. A penny washer is a flat washer with a large outer diameter, in the UK. The name originally comes from the size of the old British penny. In the UK, most industries refer to all large OD washers as penny washers, even when the OD is as much as twice the size of the old penny. They are used in the same applications as fender washers. A spherical washer is part of a self-aligning nut; it is a washer with one radiused surface, which is designed to be used in conjunction with a mating nut in order to correct for up to several degrees of misalignment between parts. An anchor plate or wall washer is a large plate or washer connected to a tie rod or bolt. Anchor plates are used on exterior walls of masonry buildings, for structural reinforcement. Being visible, many anchor plates are made in a style that is decorative.[5] A torque washer is used in woodworking in combination with a carriage bolt; it has a square hole in the centre into which the carriage bolt square fits. Teeth or prongs on the washer bite into the wood preventing the bolt from spinning freely when a nut is being tightened.[6] Spring and locking washers Belleville washers, also known as cupped spring washers or conical washers, have a slight conical shape, which provides an axial force when deformed. A curved disc spring is similar to a Belleville, except the washer is curved in only one direction, therefore there are only four points of contact. Unlike Belleville washers, they exert only light pressures.[7] Wave washers have a "wave" in the axial direction, which provides spring pressure when compressed. Wave washers, of comparable size, do not produce as much force as Belleville washers. In Germany, they are sometimes used as lock washers, however they are less effective than other choices.[a][8] A split washer or a spring lock washer is a ring split at one point and bent into a helical shape. This causes the washer to exert a spring force between the fastener's head and the substrate, which maintains the washer hard against the substrate and the bolt thread hard against the nut or substrate thread, creating more friction and resistance to rotation. Applicable standards are ASME B18.21.1, DIN 127B, and United States Military Standard NASM 35338 (formerly MS 35338 and AN-935).[9] Spring washers are a left hand helix and allow the thread to be tightened in a right hand direction only, i.e. a clockwise direction. When a left hand turning motion is applied, the raised edge bites into the underside of the bolt or nut and the part that it is bolted to, thus resisting turning. Therefore spring washers are ineffective on left hand threads and hardened surfaces. Also, they are not to be used in conjunction with a flat washer under the spring washer, as this isolates the spring washer from biting into the component that will resist turning. Where a flat washer is required to span a large hole in a component, a nyloc nut (nylon insert) must be used. The use and effectiveness of spring lock washers has been in debate of late, with some publications advising against their use on the grounds that, when tight, the washer is flat against the substrate and gives no more resistance to rotation than a normal washer at the same torque. NASA researchers have gone as far as to say "In summary, a lockwasher of this type is useless for locking." [10][11] However, a spring washer will continue to hold the bolt against the substrate and maintain friction when loosened slightly, whereas a plain washer will not.[b] A toothed lock washer, also known as a serrated washer or star washer,[8] has serrations that extend radially inward or outward to bite into the bearing surface. This type of washer is especially effective as a lock washer when used with a soft substrate, such as aluminium or plastic,[8] and can resist rotation more than a plain washer on hard surfaces, as the tension between washer and the surface is applied over a much smaller area (the teeth). There are four types: internal, external, combination, and countersunk. The internal style has the serrations along the inner edge of the washer, which makes them more aesthetically pleasing.[12] The external style has the serrations around the outer edge, which provides better holding power, because of the greater circumference.[13] The combination style has serrations about both edges, for maximum holding power.[14] The countersunk style is designed to be used with flat-head screws.[15] Tooth lockwashers are also used for ground bonding where a metal lug or object must be electrically bonded to a surface. The teeth of the washer cut through surface oxides, paints or other finishes and provide a gas-tight conductive path. In these applications the washer is not placed under the head of the screw (or under the nut), it is placed between the surfaces to be bonded. In such applications, the tooth washer does not provide any anti-rotation locking features.[16] Lock washers, locknuts, jam nuts, and thread-locking fluid are ways to prevent vibration from loosening a bolted joint. Gaskets The term washer is often applied to various gasket types such as those used to seal the control valve in taps. Crush washers are made of a soft metal such as aluminium or copper and are used to seal fluid or gas connections such as those found in an internal combustion engine. A shoulder washer is a plain washer type with integral cylindrical sleeve; they are used to keep separate different metal types, and as seals.[17] This term is also used for electrically insulating grommets.[18] Specialised types A Keps nut or K-lock nut is a nut with an integral free spinning washer; assembly is easier because the washer is captive. A top hat washer is a shoulder washer type used in plumbing for tap fitting. An insulating shoulder washer is used to electrically isolate a mounting screw from the surface it secures. Often made of nylon, these are also made of teflon, PEEK or other plastics to withstand higher temperatures. A keyed washer has a key to prevent rotation, and is used to lock two nuts in place, without allowing the torque applied to the top nut to cause the bottom nut to also rotate (such as in a threaded headset on a bicycle). https://en.wikipedia.org/wiki/Washer_%28hardware%29

    2015 10/23

  • What is the screw
    A screw, or bolt, is a type of fastener, typically made of metal, and characterized by a helical ridge, known as a male thread (external thread) or just thread, wrapped around a cylinder. Some screw threads are designed to mate with a complementary thread, known as a female thread (internal thread), often in the form of a nut or an object that has the internal thread formed into it. Other screw threads are designed to cut a helical groove in a softer material as the screw is inserted. The most common uses of screws are to hold objects together and to position objects. A screw will almost always have a head on one end which contains a specially formed shape that allows it to be turned, or driven, with a tool. Common tools for driving screws include screwdrivers and wrenches. The head is usually larger than the body of the screw, which keeps the screw from being driven deeper than the length of the screw and to provide a bearing surface. There are exceptions; for instance, carriage bolts have a domed head that is not designed to be driven; set screws often have a head smaller than the outer diameter of the screw; J-bolts have a J-shaped head which is not designed to be driven, but rather is usually sunk into concrete allowing it to be used as an anchor bolt. The cylindrical portion of the screw from the underside of the head to the tip is known as the shank; it may be fully threaded or partially threaded.[1] The distance between each thread is called the "pitch". The majority of screws are tightened by clockwise rotation, which is termed a right-hand thread; a common mnemonic device for remembering this when working with screws or bolts is "righty-tighty, lefty-loosey." Screws with left-hand threads are used in exceptional cases. For example, when the screw will be subject to counterclockwise torque (which would work to undo a right-hand thread), a left-hand-threaded screw would be an appropriate choice. The left side pedal of a bicycle has a left-hand thread. More generally, screw may mean any helical device, such as a clamp, a micrometer, a ship's propeller or an Archimedes' screw water pump. Differentiation between bolt and screw A carriage bolt with square nut A structural bolt with a hex nut and washer. There is no universally accepted distinction between a screw and a bolt. A simple distinction that is often true, although not always, is that a bolt passes through a substrate and takes a nut on the other side, whereas a screw takes no nut because it threads directly into the substrate. Machinery's Handbook describes the distinction as follows: A bolt is an externally threaded fastener designed for insertion through holes in assembled parts, and is normally intended to be tightened or released by torquing a nut. A screw is an externally threaded fastener capable of being inserted into holes in assembled parts, of mating with a preformed internal thread or forming its own thread, and of being tightened or released by torquing the head. An externally threaded fastener which is prevented from being turned during assembly and which can be tightened or released only by torquing a nut is a bolt. (Example: round head bolts, track bolts, plow bolts.) An externally threaded fastener that has thread form which prohibits assembly with a nut having a straight thread of multiple pitch length is a screw. (Example: wood screws, tapping screws.)[2] This distinction is consistent with ASME B18.2.1 and some dictionary definitions for screw[3][4] and bolt.[5][6][7] The issue of what is a screw and what is a bolt is not completely resolved with Machinery's Handbook distinction, however, because of confounding terms, the ambiguous nature of some parts of the distinction, and usage variations.[8][not in citation given] Some of these issues are discussed below: Machine screws ASME standards specify a variety of "Machine Screws"[9] in diameters ranging up to 0.75 in (19.05 mm). These fasteners are often used with nuts as well as driven into tapped holes. They might be considered a screw or a bolt based on the Machinery's Handbook distinction. In practice, they tend to be mostly available in smaller sizes and the smaller sizes are referred to as screws or less ambiguously as machine screws, although some kinds of machine screw can be referred to as stove bolts. Hex cap screws ASME standard B18.2.1-1996 specifies Hex Cap Screws that range in size from 0.25–3 in (6.35–76.20 mm) in diameter. These fasteners are very similar to hex bolts. They differ mostly in that they are manufactured to tighter tolerances than the corresponding bolts. Machinery's Handbook refers parenthetically to these fasteners as "Finished Hex Bolts".[10] Reasonably, these fasteners might be referred to as bolts, but based on the US government document Distinguishing Bolts from Screws, the US government might classify them as screws because of the tighter tolerance.[11] In 1991 responding to an influx of counterfeit fasteners Congress passed PL 101-592[12] "Fastener Quality Act" This resulted in the rewriting of specifications by the ASME B18 committee. B18.2.1[13] was re-written and as a result they eliminated the "Finished Hex Bolts" and renamed them the "Hex Cap Screw"-a term that had existed in common usage long before, but was now also being codified as an official name for the ASME B18 standard. Lug bolts and head bolts These terms refer to fasteners that are designed to be threaded into a tapped hole that is in part of the assembly and so based on the Machinery's Handbook distinction they would be screws. Here common terms are at variance with Machinery's Handbook distinction.[14][15] Lag screw Lag screws, also called lag bolts A side view Lag screws (also called lag bolts, although this is a misnomer) are basically large wood screws. Square-headed lag screws and hex-headed lag screws are covered by ASME B18.2.1 standards, and the head is typically an external hex. A typical lag bolt can range in diameter from 1⁄4 in (6.35 mm) to 1 1⁄4 in (31.75 mm), and lengths from 1⁄4 to 6 in (6.35 to 152.40 mm) or longer, with the coarse threads of a wood-screw or sheet-metal-screw threadform (but larger). The materials are usually carbon steel substrate with a coating of zinc galvanization (for corrosion resistance). The zinc coating may be bright (electroplated), yellow (electroplated), or dull gray hot-dip galvanized. Lag bolts are used to lag together lumber framing, to lag machinery feet to wood floors, and for other heavy carpentry applications. The adjective lag came from an early principal use of such fasteners: the fastening of lags such as barrel staves and other similar parts.[16] These fasteners are "screws" according to the Machinery's Handbook criteria, and the obsolescent term "lag bolt" has been replaced by "lag screw" in the Handbook.[17] However, in the minds of many tradesmen, they are "bolts", simply because they are large, with hex or square heads. In the United Kingdom and Australia, lag screws are known as coach screws. US government standards The US government made an effort to formalize the difference between a bolt and a screw because different tariffs apply to each.[18] The document seems to have no significant effect on common usage and does not eliminate the ambiguous nature of the distinction between screws and bolts for some threaded fasteners. The document also reflects (although it probably did not originate) significant confusion of terminology usage that differs between the legal/statutory/regulatory community and the fastener industry. The legal/statutory/regulatory wording uses the terms "coarse" and "fine" to refer to the tightness of the tolerance range, referring basically to "high-quality" or "low-quality", but this is a poor choice of terms, because those terms in the fastener industry have a different meaning (referring to the steepness of the helix's lead). Historical issue Old USS and SAE standards defined cap screws as fasteners with shanks that were threaded to the head and bolts as fasteners with shanks that were partially unthreaded.[19] The relationship of this rule to the idea that a bolt by definition takes a nut is clear (because the unthreaded section of the shank, which is called the grip, was expected to pass through the substrate without threading into it). This is now an obsolete distinction. Controlled vocabulary versus natural language The distinctions above are enforced in the controlled vocabulary of standards organizations. Nevertheless, there are sometimes differences between the controlled vocabulary and the natural language use of the words by machinists, auto mechanics and others. These differences reflect linguistic evolution shaped by the changing of technology over centuries. The words bolt and screw have both existed since before today's modern mix of fastener types existed, and the natural usage of those words has evolved retronymously in response to the technological change. (That is, the use of words as names for objects changes as the objects themselves change.) Non-threaded fasteners predominated until the advent of practical, inexpensive screw-cutting in the early 19th century. The basic meaning of the word screw has long involved the idea of a helical screw thread, but the Archimedes screw and the screw gimlet (like a corkscrew) preceded the fastener. The word bolt is also a very old word, and it was used for centuries to refer to metal rods that passed through the substrate to be fastened on the other side, often via nonthreaded means (clinching, forge welding, pinning, wedging, etc.). The connection of this sense to the sense of a door bolt or the crossbow bolt is apparent. In the 19th century, bolts fastened via screw threads were often called screw bolts in contradistinction to clench bolts. In common usage, the distinction (not rigorous) is often that screws are smaller than bolts, and that screws are generally tapered while bolts are not. For example, cylinder head bolts are called "bolts" (at least in North American usage) despite the fact that by some definitions they ought to be called "screws". Their size and their similarity to a bolt that would take a nut seem linguistically to overrule any other factors in this natural word choice proclivity. Other distinctions Bolts have been defined as headed fasteners having external threads that meet an exacting, uniform bolt thread specification (such as ISO metric screw thread M, MJ, Unified Thread Standard UN, UNR, and UNJ) such that they can accept a non-tapered nut. Screws are then defined as headed, externally threaded fasteners that do not meet the above definition of bolts.[citation needed] These definitions of screw and bolt eliminate the ambiguity of the Machinery's handbook distinction. And it is for that reason, perhaps, that some people favor them. However, they are neither compliant with common usage of the two words nor are they compliant with formal specifications. A possible distinction is that a screw is designed to cut its own thread; it has no need for access from or exposure to the opposite side of the component being fastened to. This definition of screw is further reinforced by the consideration of the developments of fasteners such as Tek Screws for roof cladding, self-drilling and self-tapping screws for various metal fastening applications, roof batten screws to reinforce the connection between the roof batten and the rafter, decking screws etc. On the other hand, a bolt is the male part of a fastener system designed to be accepted by a pre-equipped socket (or nut) of exactly the same thread design. https://en.wikipedia.org/wiki/Screw

    2015 10/23

Email to this supplier

-
SEND

Browse by: All Products | China Suppliers Service is provided by Bossgoo.com

Copyright © 2008-2024 Bossgoo Co., Ltd. All rights reserved.

Your use of this website constitutes acknowledgement and acceptance of our Terms & Conditions